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Abstract 
Visually guided navigation through a cluttered natural scene is a challenging problem that 
animals and humans accomplish with ease.  The ViSTARS neural model proposes how 
primates use motion information to segment objects and determine heading for purposes 
of goal approach and obstacle avoidance in response to video inputs from real and virtual 
environments. The model produces trajectories similar to those of human navigators. It 
does so by predicting how computationally complementary processes in cortical areas 
MT-/MSTv and MT+/MSTd compute object motion for tracking and self-motion for 
navigation, respectively. The model retina responds to transients in the input stream.  
Model V1 generates a local speed and direction estimate.  This local motion estimate is 
ambiguous due to the neural aperture problem.  Model MT+ interacts with MSTd via an 
attentive feedback loop to compute accurate heading estimates in MSTd that 
quantitatively simulate properties of human heading estimation data. Model MT- interacts 
with MSTv via an attentive feedback loop to compute accurate estimates of speed, 
direction and position of moving objects.  This object information is combined with 
heading information to produce steering decisions wherein goals behave like attractors 
and obstacles behave like repellers. These steering decisions lead to navigational 
trajectories that closely match human performance. 
 
 
KEYWORDS:   Optic flow, navigation, MT, MST, motion segmentation, object 
tracking
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1. Introduction 
The ViSTARS (Visually-guided Steering, Tracking, Avoidance, and Route 

Selection) model demonstrates how the primate magnocellular pathway may generate 
sufficient information for reactive navigation, route selection, and target tracking tasks 
(Figure 1).  When immersed in a realistic visual world, ViSTARS is capable of human-
like steering behaviors towards goals and around obstacles in response to realistic visual 
scenes.  

 
Figure 1. Model overview: pictorial representation of each processing stage coupled with functional 
description, model level number, corresponding equation number, and output variable labels.  See 
text for model description. 
 
ViSTARS is a synthesis and further development of two previous models: The STARS 
model of Elder et al. (2007) is capable of reactive steering towards goals and around 
obstacles, and accurately simulates human navigational data of Fajen and Warren (2003), 
among others. However, the STARS model did not directly process visual scenes. Rather, 
it used the equations that describe scenic geometry of Longuet-Higgins & Prazdny (1980) 
as model inputs. Browning, Grossberg, and Mingolla (2008b) showed how ViSTARS 
could build upon STARS to directly process visual data, notably virtual world animations 
and driving video sequences of realistic visual scenes, as well as random dot displays, to 
compute accurate heading, or direction of travel, estimates at human-like accuracies. To 
accomplish this, the motion processing front end of ViSTARS adapted a biological 
motion perception model, called the 3D FORMOTION model, that has been 
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progressively developed to explain and predict large perceptual and neurobiological data 
bases about motion perception (Baloch & Grossberg, 1997; Chey, Grossberg, & 
Mingolla, 1997; Berzhanskaya, Grossberg, & Mingolla, 2007; Grossberg, Mingolla, & 
Viswanathan, 2001). The current extension of ViSTARS shows, in addition, how  
heading estimates can be joined to STARS navigational mechanisms to achieve reactive 
navigation and object tracking estimates in response to realistic visual scenes.  

This synthesis clarifies how the brain exploits computationally complementary 
processes for navigation and object tracking, respectively (Grossberg, 2000). As will be 
seen in greater detail below, the processing stream through cortical areas MT+/MSTd is 
specialized for visually based navigation, whereas the parallel processing stream through 
cortical areas MT-/MSTv is specialized for visual tracking of moving objects. In 
particular, navigating a body moving with respect to the world uses additive processing, 
whereas tracking an object moving with respect to that body uses subtractive processing. 

By showing navigational competence in realistic settings, ViSTARS provides an 
example of how real-time adaptive control systems can accomplish visually-based 
autonomous robotic navigation. By linking identified brain regions and cell types to 
navigational behaviors, the model clarifies how the brain accomplishes visually-based 
navigation and object tracking. Previous models typically contribute to one of these 
goals, but not both.   

ViSTARS processing levels correspond to brain regions from retina through 
cortical areas V1, MT, and MST. Before describing the model, a short summary of 
pertinent experimental data will be given.   

Neurophysiology.  The early primate visual system consists of two distinct 
pathways: the parvocellular (P) pathway is concerned with high resolution, color, static 
information, whereas the magnocellular (M) pathway is concerned with low resolution, 
monochromatic, transient information  (Kandel, Schwartz, & Jessell, 2000).  The 
parvocellular pathway processes object form and identity in the What, or ventral, cortical 
processing stream. The magnocellular pathway processes motion, object location, and 
action in the Where, or dorsal, cortical processing stream (Mishkin, Ungerleider, & 
Macko, 1983; Schneider, 1967).  Although form processing influences motion perception 
and navigational tasks through form-motion interactions (Baloch & Grossberg, 1997; 
Berzhanskaya et al., 2007; Grossberg et al., 2001; Ponce, Lomber & Born, 2008), the 
results reported herein focus on the magnocellular pathway.   

Magnocellular retinal cells respond with a burst of activation when presented with 
a step input (Benardete & Kaplan, 1999; Cleland, Dubin & Levick, 1971; Enroth-Cugell 
& Robson, 1966; Kaplan & Benardete, 2001; Valois, Albrecht & Thorell, 1982).  M 
pathway retinal cells project to lateral geniculate nucleus (LGN) layers 1 and 2 and then 
to primary visual cortex (V1) (Callaway, 2005).  V1 cells are directionally selective, 
responding more vigorously to motion in a preferred direction at a preferred speed, and 
are disparity selective (Hubel & Wiesel, 1959, 1962, 1968; Livingstone & Hubel, 1987; 
Livingstone, 1998; Schiller, Finlay & Volman, 1976).  

V1 projects to area MT (middle temporal cortex, or V5) which, in turn, projects to 
area MST (medial superior temporal cortex) (Albright, 1984; Born & Bradley, 2005). 
Cells in MT respond preferentially to motion in a particular direction within a range of 
speeds and depths (Albright, 1984; Born & Bradley, 2005).  Macaque MT has two main 
sub-divisions:  MT+ consists of cells with large additive receptive fields that project 
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primarily to dorsal MST (MSTd); MT- consists of cells with subtractive (that is, ON-
center OFF-surround opponent-motion) receptive fields that project primarily to ventral 
MST (MSTv) (Allman, Miezin, & McGuinness, 1985; Born, 2000; Born & Tootell, 
1992).  The MT+/MSTd stream carries out visually-guided navigation, including heading 
estimation (Born & Tootell, 1992; Duffy, 1998; Duffy & Wurtz, 1995, 1997).  The MT-

/MSTv stream carries out object-based segmentation and tracking (Born & Tootell, 1992; 
Duffy, 1998).  In order to realize their complementary tracking and navigation functions, 
ventral and dorsal MST cells have different response properties.  MSTv cells respond to 
relative direction of object motion across a background (Duffy, 1998; Tanaka, Sugita, 
Moriya, & Saito, 1993).  MT- cells respond to objects moving within a specific range of 
speeds, whereas MSTv cells respond more vigorously to faster speeds (Tanaka et al., 
1993). MSTd cells respond to large motion patterns such as those that occur during self-
motion through the environment (Duffy, 1998; Grossberg et al., 1999; Stone & Perrone, 
1994, 1997a).  Thus MST appears to integrate information across MT.  The human 
homolog of monkey MST is also implicated in human heading detection tasks (Beardsley 
& Vaina, 2001).  Heading appears to be represented as a population code in both primate 
MSTd and human MT complex (hMT+) (Beardsley & Vaina, 2001; Page & Duffy, 
1999). 

It is the MT- ON-center OFF-surround network that enables it to respond to 
differential motion.  Its cells detect motion discontinuities at object boundaries, when an 
observer moves, or due to independent object motion (Grossberg et al., 1999; Longuet-
Higgins & Prazdny, 1980; Nakayama & Loomis, 1974; Pack et al., 2001; Rieger & 
Lawton, 1985).  Humans also appear to utilize disparity information to segment moving 
objects.  When no disparity information is available, humans take longer to respond and 
are less accurate when discriminating moving objects (Rushton, Bradshaw, & Warren, 
2007; Rushton & Warren, 2005a, 2005b; Warren & Rushton, 2007).  Indeed, MT- cells 
can have ON-centers that prefer one disparity and OFF-surrounds that prefer another 
(Bradley & Andersen, 1998; Born & Bradley, 2005).  These cells can respond to both 
disparity and differential motion, thereby combining the segmentation abilities of each.   

A line viewed through a small isotropic aperture, such as a circular receptive field 
of a neuron, always appears to move in the direction that is perpendicular to its 
orientation.  This is known as the aperture problem (Marr & Ullman, 1981; Wallach, 
1935; Wuerger, Shapley, & Rubin, 1996).  MT- cells initially respond to the 
perpendicular direction of a line or bar's orientation if the line extends beyond the cell's 
receptive field, but after a period of 100-200ms respond to the true direction of motion 
(Pack & Born, 2001).  Thus MT- computes an aperture-resolved object motion signal. 

Psychophysics. Fajen and Warren (2003) demonstrated how humans steer with a 
smooth trajectory around obstacles towards a goal (Figure 2 panels A and B). They found 
that the deviation from a straight line of the chosen trajectory is dependent on the 
distance between the observer and the obstacle.  When obstacles are at a fixed depth but 
the visual angle between current heading and the obstacle is varied, smaller visual angles 
result in wider trajectories around the obstacle.  When visual angle remains fixed and 
depth is varied, humans steer earlier and produce wider trajectories around obstacles at 
closer depths.  In both cases, closer obstacles result in larger deviations from a straight 
line trajectory.   
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Figure 2.  Mean human trajectories around obstacles (circles) towards a goal (x) are shown in panels 
A and B.  Reproduced from Fajen and Warren (2003, Figure 10) with permission.  STARS 
trajectories are shown in panels C and D and ViSTARS trajectories are shown in panels E and F.  
When the obstacles are at fixed depth but variable visual angle (panels A, C and E), humans deviate 
more from a straight path for smaller visual angles.  When the obstacles are at fixed visual angle but 
variable depth (panels B, D and F), humans deviate more quickly and with larger magnitude for 
smaller depths.   
 

Prior Modeling. Fajen and Warren (2003) proposed a behavioral model whereby 
goals are treated as attractors and obstacles as repellers.  The model takes the form of a 
damped spring equation.  Utilizing a third-person geometrical description of objects in 
the world and observer heading, it provided a good fit to human steering data (Fajen & 
Warren, 2003).  In their model, object positions are compared against the current 
heading; if a collision with an obstacle is likely, then heading is repelled by the obstacle 
to produce a trajectory that avoids the obstacle.  If heading is not congruent with the goal 
position, then the goal attracts heading to produce a trajectory that approaches the goal.  
The balance of attraction and repulsion defines the final trajectory.   

The STARS model of Elder et al. (2007) demonstrated how the data observed by 
Fajen and Warren (2003) can be explained by a first-person dynamical explanation of 
how goal position, obstacle position, and heading may be computed from optic flow.   
These representations form three Gaussian activation distributions across a cortical map.   
Trajectories are computed by adding together these activity distributions, with the 
obstacle Gaussian subtracted from the sum of the other two Gaussians.  The resulting 
steering field is a net distribution of activity (Figure 3) whose direction and magnitude 
control angular steering velocity.  STARS exhibits steering behavior almost 
indistinguishable from the Fajen and Warren (2003) model (Figure 2, panels C and D). 
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Figure 3: The STARS model combines obstacle, goal, and heading position to determine a steering 
trajectory.  Spatial position of obstacles, goal and heading are represented as unimodal activation 
distributions.  Summation of the distributions, with a negative sign on the obstacle distribution, 
results in a net distribution in the steering field.  The position of the peak of this distribution 
determines the magnitude and direction of the steering command to the left or right.  [Reproduced 
from Elder et al. (2007) with permission.] 

 
As noted in the Introduction, STARS does not process visual imagery.  Instead, optic 
flow is computed analytically from a scene geometry whose noise-free description is 
assumed to be provided (Longuet-Higgins & Prazdny, 1980).  Optic flow in this 
representation is then processed by the model.  This optic flow estimation is highly 
precise and accurate, and is dense in the sense that motion vectors are estimated for each 
pixel in the visual input.  Optic flow is transformed into log-polar coordinates whose 
cortical V1 representations are comparable to those found in vivo (Schwartz, 1977; 
Wagner, Polimeni, & Schwartz, 2005).  The log-polar transformation produces high 
levels of detail in the central, or foveal, region and low levels of detail in the periphery.  
Model MT and MST cells process this input.  In accordance with a predicted V2-MT 
pathway (Berzhanskaya et al., 2007; Grossberg, 1991; Maunsell & Van Essen, 1983), 
interactions from model V2 to MT provide disparity information to the MT- cells.  The 
output of MST is a heading estimate in MSTd, and object motion estimates in MSTv.  
Gain fields compensate for eye and head rotations, and map V1 retinotopic 
representations into body-centric coordinates in MT-/MST.   

In contrast with the Fajen and Warren (2003) model, STARS computes estimates 
of the visual angle of heading and objects, and of object depth, directly from optic flow in 
realistic visual imagery.   

The use of heading by humans during navigation has been contested (Rushton et 
al., 1998; Wilkie & Wann, 2003, 2006).  In some cases, goal position relative to the 
navigator's position is sufficient to explain human steering data.  The Ruston et al. (1998) 
ego-centric model orients itself towards the goal and moves directly towards it.  Heading 
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is not required.  Warren et al. (2001) demonstrated that humans can make use of both 
strategies: in featureless environments where heading is hard to estimate, ego-centric goal 
position is used, but in richer environments, heading information is also used.  STARS 
demonstrated the same behavior (Elder et al., 2007).   

As noted in the Introduction, ViSTARS extends STARS to process visual 
imagery. Realistic images are noisier than analytically computed optic flow.  Their pixel 
intensity values are prone to sensor noise, since the sensor responds directly to light, 
which is by nature stochastic, and aliasing, the sensor has fixed pixel size which may not 
match the size of elements in the environment (Bradski & Kaehler, 2008; Langer & 
Mann, 2003; Mann & Langer, 2002).  Indeed, the term optic snow has been coined to 
describe motion estimates from natural image sequences (Langer & Mann, 2003; Mann 
& Langer, 2002).  The aperture problem causes additional ambiguities in motion 
estimates that are derived from scene statistics at each point in the image (Marr & 
Ullman, 1981; Wallach, 1935; Wuerger, et al., 1996).   Motion estimates also suffer from 
the correspondence problem: in a cluttered scene, objects do not have unique intensity 
values across space or time, so that ambiguity is introduced to motion estimates when 
tracking pixel features across time, especially in scenes with cast shadows, specular 
highlights, and other vagaries of illumination across discrete video frames (Aggarwal & 
Nandhakumar, 1988; Bradski & Kaehler, 2008).   

The 3D FORMOTION model combines form and motion information to produce 
an accurate motion estimate from ambiguous inputs when either process alone is 
insufficient (Baloch & Grossberg, 1997; Berzhanskaya et al., 2007; Grossberg et al., 
2001).  Model stages corresponding to cortical area V2 represent boundaries in depth.  
These boundary signals are, via a V2-to-MT inter-stream interaction, used to capture 
directional motion signals at the corresponding depth in MT.  In a complementary 
interaction, motion signals in MT are used to disambiguate incomplete or ambiguous 
boundary signals in V2 via feedback to V1.  This indirect feedback from MT to V2 
allows motion information to determine object shape.  Utilization of form processing 
information allows the motion processing stages to perform object feature tracking and 
thereby reduce ambiguity.   Spatially anisotropic grouping integrates the feature-
enhanced motion signals to produce a global object motion percept.   

The 3D FORMOTION model has previously explained many perceptual and 
neurobiological data about motion perception.  However, it has not previously been 
demonstrated capable of processing natural image streams.  Additionally, the model 
processes a single MT/MST stream that is most consistent with MT-/MSTv.  ViSTARS 
includes the two complementary MT-MST streams, MT-/MSTv for object tracking and 
MT+/MSTd for optic-flow based navigation, that are found in the brain.   

The ViSTARS model and its properties are described before simulations are 
provided of how it simulates human performance.   
 
2. The ViSTARS Model 

Implementation.  The model is defined as a system of differential equations that 
are described in the Appendix.  The model was tested using computer-generated 
animations, publicly available video, and video taken from a moving vehicle while 
driving.  Simulations were performed in MATLAB R14 (MathWorks, 2005) on a dual 
2Ghz AMD Opteron (AMD, 2003) based workstation with 8Gb of RAM running 
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Microsoft Windows XP x64 (Microsoft, 2003).  Input to the model was in the form of a 
frame-based input stream, either computer-generated image sequences or video, as 
described below.  Euler's method was used to numerically integrate the solution to the 
equations.  The equations were not integrated to equilibrium.  Rather, the activations of 
model cells ebb and flow with changes in the input.  Whether or not a cell at a particular 
spatial position reaches an equilibrium state is dependent on the magnitude of changes in 
the input stream at that spatial position.  Code samples, input videos, and demonstrations 
of results can be obtained from http://cns.bu.edu/vislab/objectmotion. 
 Inputs and preprocessing.  Inputs to the model are in the form of an 8-bit 
grayscale image stream.  The resolution and frame rate of the image stream are dependent 
on the source.  For example, videos that we created while driving with a camera mounted 
in a car were processed at 15 frames per second (fps), due to constraints from the camera, 
post-processing, and computation time.  The effective frame rate in the immersed 
environment, where more flexibility in generating the image sequence was afforded, was 
47 fps.  See Appendix Table 1 for detailed descriptions of each video source.  The same 
model parameters were used irrespective of the source.  When the frame rate was slower 
than the integration time step, each video frame was presented for multiple time steps.  
Intensity values for the grayscale pixels were scaled between 0 and 1 by dividing the 8-
bit intensity value by 255.  The ON-cell channel response was defined as the image 
intensity value, and the OFF-cell channel response computes the complementary activity 
(Chelian & Carpenter, 2005); namely, one minus the ON-cell channel response 
(Appendix, equations 0.2 and 0.3).   

Three scales of inputs were created by reducing the size of the input by successive 
factors of 2.  The first scale is the original image, the second scale reduces the height and 
width of the original image by a factor of 2, and the third scale reduces the height and 
width of the original image by a factor of 4.  Size reduction is performed by taking the 
mean intensity value of a group of pixels as described in the Appendix.  All such resizing 
methods introduce some aliasing, as discussed in the Appendix.   The model processes 6 
image streams: the ON channel at scales 1, 2 and 3, and the OFF channel at scales 1, 2, and 
3.  The same parameters were used for all image streams and are defined in the 
Appendix.   

For navigation simulations in the virtual environment, coarse depth information 
was incorporated into the model inputs: the near depth was defined as everything in front 
of the goal, and the fixation depth was defined as everything at the same depth as the goal 
(cf., Elder et al., 2007).  These stimuli did not include far depths.  Thus navigation 
simulations process 12 image streams, six for near depth and six for fixation depth.  The 
parameters used for both depth planes were the same.  Interactions between the depths 
are defined at model area MT (Figure 1, levels 5 and 7). 

Retina – LGN.  The first stage of the model (Appendix, equations 1.1-1.3) is an 
ON-center OFF-surround shunting that contrast enhances and normalizes the input image.  
The ON-center is narrow, consisting of a single pixel.  The OFF-surround is a 2-
dimensional Gaussian truncated at 7x7 pixels.  The output of this stage is through a 
thresholded sigmoid signal function, which further enhances contrast. 

Level 2 of the model (Appendix, equations 2.1-2.3) consists of a non-directional 
transient cell network (Baloch & Grossberg, 1997; Berzhanskaya et al., 2007; Grossberg 
et al., 2001).  The transient cell network responds with a burst response at the onset of a 
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stimulus.  This occurs when a light object appears (or a dark object disappears) in the ON 
stream and when a dark object appears (or a light object disappears) in the OFF stream.  
The time course of the model cells is configured such that the peak of the response occurs 
after 70-75ms, similar to M-pathway retinal cells (Benardete & Kaplan, 1999; Kaplan & 
Benardete, 2001).   

Primary visual cortex (V1). Level 3 of the model (Appendix, equations 3.1-3.3) 
consists of directional transient cells (Berzhanskaya et al., 2007; Chey et al., 1997;  
Grossberg et al., 2001).  These cells respond to motion in a preferred direction.  We 
implemented 8 directions at 45 degree increments.  The three input scales correspond to 
speed in the vector velocity domain: a directional cell that responds at scale 3 (one 
quarter of the size of the original image) is responding to motion 4 times as fast as a cell 
in the same position at scale 1.  

The directional transient cell network was designed to allow model cells to 
respond to motion at a wide range of object speeds (Berzhanskaya et al., 2007; Chey et 
al., 1997, 1998; Grossberg et al., 2001). This is accomplished by incorporating a stage of 
directional inhibition via directional interneurons.  Inhibition travels in the direction 
opposite the preferred direction of the cell and is thus called nulling inhibition.  Nulling 
inhibition has been found in vivo in rabbit (Barlow & Levick, 1965; Fried, Münch, & 
Werblin, 2002, 2005), cat (DeAngelis, Ohzawa, & Freeman, 1995), and primate V1 
(Livingstone, 1998).  It thus appears to be a widespread mechanism across mammals.  
The recently discovered Starburst inhibitory interneurons in the rabbit have been shown 
to provide directional nulling inhibition and occur in a network that strikingly resembled 
the model directional transient cell network (Fried et al., 2002, 2005).  It remains to be 
tested if they enable their target directional cells to retain directional selectivity in 
response to a wide range of speeds. Level 4 of the model (Appendix, equations 4.1-4.2) 
combines ON and OFF channels and uses directional competition to normalize activity 
across direction.  Normalization across direction suppresses activity in positions where 
there is a high degree of directional ambiguity and enhances activity in positions where 
there is a low degree of directional ambiguity (Bayerl & Neumann, 2004; Chey et al., 
1997, 1998).  Directional normalization hereby aids in the resolution of the aperture 
problem.   

The output of level 4 is resized such that all scales are represented at the same 
pixel resolution.  Thus, the height and width of scale 1 are reduced by a factor of 4, and 
the height and width of scale 2 are reduced by a factor of 2.  Size reduction is performed 
via the pixel averaging procedure described by Appendix equation 4.2.  The responses in 
model V1 are calibrated both by their parameters and by the timescale of model retina 
responses.  As noted above, model retina responds with a peak of activation after roughly 
75ms.  As a result, in V1 scale 1 represents speed in the range of 1 pixel every 75ms, 
scale 2 in the range of 2 pixels every 75ms, and scale 3 in the range of 4 pixels every 
75ms.   

Middle temporal area – additive cells (MT+) and dorsal medial superior temporal 
area (MSTd).  Level 5 (Appendix, equations 5.1-5.4), corresponds to MT+ and 
implements a long-range directional filter.  The filter pools information across speed to 
produce a global direction of motion estimate.  The directional long-range filter is a 2D 
Gaussian elongated in the preferred direction of the cell that realizes anisotropic spatial 
integration (Berzhanskaya et al., 2007).  Temporal integration is provided by the 
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dynamics of the shunting network.  The elongation of the spatial filter, when combined 
with the temporal integration of the network, allows MT+ to track motion across space 
and time.  Recurrent shunting ON-center OFF-surround interactions within the level 
result in a choice, or winner-take-all, network (Grossberg, 1973), which reduces 
ambiguities introduced by the spatiotemporal integration.  Feedback from the MSTd 
heading estimate (level 6) modulates activity to ensure that motion patterns which are 
consistent with the current heading estimate are enhanced.   

Level 6 of the model (Appendix, equations 6.1-6.2), corresponds to MSTd and 
estimates heading through a bank of adaptive flow filters.  The adaptive flow filters 
perform a template match against the global motion estimate MT+.  Competition within 
this stage results in contrast enhancement to ensure that only a small subset of cells is 
highly active at any one time.  In accordance with neurophysiological data (Duffy & 
Wurtz, 1995, 1997), the output of MSTd is an accurate heading estimate that is highly 
robust to noise in the input stream. 

Middle temporal area – subtractive cells (MT-) and ventral medial superior 
temporal area (MSTv).  Level 7 of the model (Appendix, equations 7.1-7.4), corresponds 
to MT- and determines motion boundaries in the scene.  Motion boundaries occur when 
an object moves differently from its background, either due to a large depth discontinuity 
as the observer navigates towards a stationary object, or due to the independent motion of 
the object.  Directional filters detect differential motion, recurrent ON-center OFF-
surround connectivity reduces directional ambiguities, and attentive matching feedback 
from MSTv (level 8) further reduces ambiguities in the object motion estimate.  In accord 
with neurophysiological data (Born & Bradley, 2005) and the STARS model (Elder et al., 
2007), MT- was implemented with an ON-center and OFF-surround that respond 
preferentially to different depths.  For example, if the ON-center prefers the near depth, 
then the OFF-surround prefers the fixation depth, and vice-versa.  The output of MT- is the 
motion boundaries in a scene. 

Level 8 (Appendix, equations 8.1-8.2) corresponds to MSTv and combines object 
motion estimates from MT- in a given direction across speed, such that the activity in 
MSTv increases with the speed of object motion.  Directional competition selects the 
strongest directional signal.  In accord with neurophysiological data (Duffy, 1998) and 
the STARS model (Elder et al., 2007), model MSTv activity represents the position, 
direction, and speed of object motion the scene.   
3. Results 

The STARS model (Elder et al., 2007) combines heading with goal and obstacle 
positions for reactive steering.  ViSTARS has previously been shown capable of human-
like accuracy in heading detection tasks in realistic scenes (Browning et al., 2007a, 
2007b, 2007c, 2008b).  The present article also demonstrates how the MT-/MSTv stream 
can represent object position in response to realistic scenes at accuracies that enable the 
STARS steering circuitry to necessary to reactively avoid obstacles and approach goals.  
Speed and direction of object motion estimates were not utilized by STARS.  They are, 
however, a major function of the MT-/MSTv processing stream (Albright, 1984; Allman, 
Miezin, & McGuinness, 1985; Born, 2000; Born & Bradley, 2005; Born & Tootell, 1992; 
Tanaka et al., 1993) and are demonstrated in Figure 4.   
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Figure 4:  Model activations in MT- and MSTv for frames 20, 30 and 40 of the Hamburg taxi 
sequence. The right panel shows MSTv outputs, the middle panel shows MT- outputs, the left panel 
shows a blow-up of MT- outputs in an area of input where a pedestrian is present.  The background 
image is the video frame, blue arrows represent motion, arrow length corresponds to speed, and 
arrow direction corresponds to the estimated motion direction.  The model representations of three 
moving cars and a moving pedestrian produce speed and direction of the object motions.  

 
Figure 4 shows a series of frames of the Hamburg taxi sequence (obtained from 
http://i21www.ira.uka.de/image_sequences/#taxi, hosted by Institut fuer Algorithmen und 
Kognitive Systeme) with the MT- and MSTv activations overlaid as motion vectors, on 
the left and right, respectively.  Note how the white taxi is tracked by activity in both MT- 
and MSTv with the speed and direction of motion being estimated as it turns through the 
junction.  The two darker vehicles moving into the scene from the left and right, 
respectively, are tracked with the speed and direction of motion estimated.  A pedestrian 
in the top left is also tracked and his speed and direction of motion estimated, as shown in 
the box on the left.  The cars are estimated to be traveling at much the same speed as each 
other, whereas the speed of the pedestrian is estimated to be much slower than that of the 
cars.  The Hamburg taxi sequence thus demonstrates model competence with a stationary 
camera.   

The model also performs well with a moving camera.  Figure 5 illustrates MSTv 
activation when processing an image sequence where a car is driving on a highway and 
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another car is overtaking it on the left hand side.  The motion of the overtaking car on the 
left is estimated, as is the relative motion of any stationary objects that have a significant 
depth difference between them and the background.  No other objects produce motion 
estimates.  In particular, the cars in the distance move at roughly the same speed as the 
camera. 

Figure 5:  Model MSTv outputs when processing video taken in a car while driving.  The camera is 
moving straight forward.  Motion signals are present where there is a difference between an object 
and its surrounding.  The overtaking car on the left, the tree on the left ,and the telephone poles on 
the right are represented as moving objects with their relative directions of motion accurately 
assessed.  The overtaking car is moving faster than the camera.  The static trees and telephone poles 
have a significant depth discontinuity between themselves and the sky, thus creating a differential 
motion signal as the car moves towards them. 
 
In all video sequences tested with the model, MT- and MSTv provide reasonable speed 
and direction estimates of objects in the sequence.  Directional competition in MSTv 
ensures that motion estimates are in the direction of the maximally active cell at that 
spatial position, and removes activation from areas of high motion ambiguity, resulting in 
motion-based object segmentation.  Direction estimates in MT- are less strictly resolved.  
At any spatial position, multiple directions can be active although, in general, a single 
direction will dominate.  This allows model MT- to represent direction at a finer 
resolution than the eight that are presently implemented 

The motion estimates in both MT- and MSTv track moving contours in the object 
texture and therefore the density of the motion estimate depends on the nature of the 
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object and its texture.  Motion estimates in model MSTv track objects in the video 
sequences with around 150-200ms delay.   

 
Figure 6:  Virtual environment layout.  Left panel, overhead view: the solid black circle represents 
the position of the obstacle, and the empty circle represents the position of the goal.  Right panel, 
model view: the black column is the obstacle, and the white column is the goal. 

 
To use model MST outputs for steering, video sequences were created in a virtual 

environment that was designed to mimic the Fajen and Warren (2003) experimental 
environments as closely as possible (Figure 6).   Video sequences were generated for 
each of the seven trajectories shown in Figure 2, panels A and B.  These video sequences 
were processed by the model, and object positional representations in MSTv were 
assessed.  Figure 7 demonstrates how the MSTv activation distributions cluster around 
object boundaries.   

 
Figure 7: Model MSTv activates around the boundaries of the object.  Representative results taken 
from frame time step 700 when processing trajectory 3 (4m depth, 2o visual angle) from Fajen and 
Warren (2003).   

 
Figure 8 illustrates the goal object position overlaid with MSTv activation across all 
seven Fajen and Warren (2003) trajectories.  MSTv activations track the boundaries of 
the objects and, when the object is close to the observer, omission errors become more 
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prevalent due to the larger texture-free central region of the object.  Figure 8 also shows 
that MSTv activity can occur at positions where no object is present.  Such positional 
errors are generally small.  Over 98% of active model cells are within 4 pixels of the 
object, where 4 pixels represent less than 5% of the width of the input sequence.  Many 
of these positional errors are an artifact of the distributed spatial representation in MSTv, 
shown in Figure 7. 

 
Figure 8:  A comparison of model MSTv activations with the position of the goal in the visual input 
as the observer travels along the trajectories shown in Figure 2 panels A and B.  Each horizontal slice 
displays the outputs from model MSTv to the steering field, color coded to represent whether or not 
MSTv activation is congruent with the goal position.  Green indicates where MSTv activation occurs 
congruent with the pixel positions of the goal.  Blue indicates positional errors, where MSTv 
activation occurs in positions not occupied by the goal.  Red indicates omission errors, where MSTv 
is not active but the goal occupies those pixel positions.  As the observer turns rightward to avoid the 
obstacle (not shown), the goal moves to the left on the visual image.  Once the obstacle is 
circumnavigated, the observer turns and moves back towards the goal.  Positional errors cluster 
around the boundaries of the goal and, as such, are often an artifact of distributed spatial 
representations in MSTv.  Omission errors occur predominantly when the observer is close to the 
goal, in these cases the central region of the goal does not move on the visual image and therefore 
does not generate motion signals.   
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In the tested stimuli, the goal and obstacle objects have no texture, so only their 
boundaries generate motion signals.  82% of the object pixels are represented in the 
MSTv activations, with 18% missed due to positional or omission errors.  As the observer 
approaches the objects, they appear larger in the input image.  Therefore central regions 
of the objects no longer produce motion signals.   

To test if these ViSTARS estimates are sufficient for human-like steering 
performance, the model was tested in a virtual environment using STARS steering 
dynamics (Elder et al., 2007), as defined in Appendix equations 9.0-9.7.  Steering 
parameters were hand-tuned to emulate qualitatively similar steering behaviors to 
humans, as described by Fajen and Warren (2003).  Parameters for the model from its 
Retina to MST remained the same as in prior simulations. Results are shown in Figure 2, 
panels E and F.  Figure 2 panel E demonstrates that, for obstacles at a fixed depth, 
smaller visual angles between observer heading and object position result in larger 
deviations from a straight line trajectory.  Figure 2 panel F demonstrates that, for fixed 
visual angle, closer objects result in faster, and slightly wider, steering trajectories.  These 
steering properties are also exhibited by humans.   
4. Discussion 
 The ViSTARS model unifies and extends two streams of modeling work: the 3D 
FORMOTION motion processing model (Baloch & Grossberg, 1997; Berzhanskaya et 
al., 2007; Grossberg et al., 2001)  and the STARS navigational model (Elder et al., 2007).  
Until now neither model processed natural image sequences to control reactive steering.  
ViSTARS successfully demonstrates these capabilities.   

In particular, ViSTARS demonstrates that the steering mechanisms of the STARS 
model are capable of human-like performance in response to image-based inputs.  
STARS used a log-polar transformation in V1, as occurs in vivo (Schwartz, 1977; 
Wagner, Polimeni, & Schwartz, 2005).  ViSTARS produced qualitatively human-like 
steering performance in the absence of the log-polar transformation.  Its future inclusion 
may allow for a closer match to human data.   

The 3D FORMOTION model is herein extended to include the parallel cortical 
streams MT+/MSTd and MT-/MSTv, whose complementary properties enable visually 
based navigation and object tracking, respectively.  Additional work is required to 
integrate this enhanced motion model with the form-motion feedback interactions 
between V1, V2 and MT that are needed to deal with many situations (Baloch & 
Grossberg, 1997; Berzhanskaya et al., 2007; Francis & Grossberg, 1996; Grossberg et al., 
2001).   

Although ViSTARS offers a good qualitative match to the human data, the 
differences between steering commands in environments with obstacles at a fixed visual 
angle (Figure 2, panel F) are relatively small compared with those at a variable visual 
angle (Figure 2, panel E).   These differences are due to how depth is represented in the 
model.  Depth in the ViSTARS model is encoded in two ways: speed (faster objects in a 
static world are closer), and size (for objects of fixed size, farther objects are smaller).   
When the trajectory consists of a curved path, speed can be an unreliable measure of 
depth, since rotations produce the same motion vectors irrespective of depth (Longuet-
Higgins & Prazdny, 1980). The influence of rotational information is shown in data 
wherein humans tend to report curvilinear heading unless specifically instructed to report 
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tangential heading (Banks, Ehrlich, Backus, & Crowell, 1996; Kelly, Beall, Loomis, 
Smith, & Macuga; Li &  Warren, 2004; Royden, Crowell, & Banks, 1994; Stone & 
Perrone, 1997b).    The ViSTARS representation of speed by the magnitude of MSTv 
activation is a reliable measure of depth only on straight line trajectories.    

Due to the resolution available in our immersed environment (1024 X 64 pixels) 
and the resulting aliasing, the differences between the widths of the near and far objects 
are in the range of 1-2 pixels on each side.  Thus the depth-from-size information 
available to ViSTARS is also limited.     

Both the STARS model and the Fajen and Warren (2003) model had high 
precision measures of depth available to them.  STARS utilized highly accurate optic 
flow to provide precise speed measurements, reliably predicting depth in static 
environments.  Fajen and Warren (2003) explicitly incorporated precise distance 
measurements into their model.   ViSTARS demonstrates that only coarse depth 
estimates are required to compute heading and segment moving objects in order to steer 
in a human-like fashion, including obstacle avoidance and goal approach.  ViSTARS 
processes low resolution noisy natural image sequences to produce accurate motion 
estimates using only 3 speeds and 8 directions.   

A number of models exhibit properties comparable to portions of ViSTARS.  
Heading based models and navigation models are discussed in Browning, Grossberg and 
Mingolla (2008b) and Elder et al. (2007).  Here we concentrate on object motion 
estimation models.   

Bayerl and Neumann (2004) modeled how the primate magnocellular pathway 
processes optic flow.  Inputs to their model, in the form of artificial stimuli and natural 
image sequences, are processed by Elaborated Reichardt detectors (van Santen & 
Sperling, 1985).  Directional normalization in model V1 reduces activity in areas of high 
ambiguity, and model MT performs long-range directional filtering of motion signals, as 
in Chey et al. (1997) and Grossberg et al. (2001).  Feedback from MT to V1 resolves the 
aperture problem in V1, which in turn results in a resolved signal in MT.  Good object 
motion and observer motion estimates are hereby generated when the camera is stationary 
but the system cannot segment object motion from observer motion when the camera (or 
eye or body) is moving.  We believe that dealing with a moving observer is a basic 
evolutionary pressure that caused the branching of processing in MT, with MT- 
computing object motion estimates, and MT+ developed to allow for estimates of 
observer motion.  The Bayerl and Neumann model (2004) is implemented by solving 
differential equations at equilibrium and analytically computing the solution. Network 
dynamics are simulated via an iteration scheme.  Their model predicts that V1 should 
have an aperture-resolved motion estimate on a similar time course to that demonstrated 
in MT (Pack & Born, 2001), as predicted in Chey et al. (1997).  Some cells in V1, such as 
end-stopped cells, demonstrate an aperture-resolved motion signal over time (Pack, 
Livingstone, Duffy & Born, 2003).  However, at present there is no evidence that these 
unambiguous signals in V1 propagate to overcome the aperture problem in other regions 
of V1, as suggested by the Bayerl and Neumann (2004) model.  Thus, although Bayerl 
and Neumann (2004) present interesting results, the model would need to be modified to 
account for the human behavioral and primate neurophysiological data that ViSTARS 
explains.     
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Zemel and Sejnowski (1998) presented a model in which MSTd codes not only 
observer motion with respect to the environment (heading) but also the relative motion 
between an observer and a particular object.  Inputs were ray-tracings of image sequences 
depicting observer motion, eye movements, and object motion.  MT was defined to 
represent accurate optic flow describing the scene.  A neural network was trained through 
an unsupervised optimization procedure to encode a compressed representation of motion 
represented in MT.  The resulting compressed representation had receptive fields similar 
to various MSTd cells.  The unsupervised optimization algorithm they used computed 
connection weights between input, hidden, and output layers such that the output was the 
same as the input.  The hidden layer modeled MSTd and compressed motion in the input 
into object and environmental motion structure.  Their model pooled across all MSTd 
cells to determine heading.  Radial cells in primate MSTd generally have receptive fields 
covering greater than 50 degrees of the visual field, with many having receptive fields 
greater than 90 degrees (Duffy & Wurtz, 1997), that are suitable for processing observer 
motion.  However, some MSTd cells have receptive fields of less than 10 degrees; 
ViSTARS does not presently explain their function.  While neither the method used to 
define flow fields nor the optimization scheme used to tune MT-to-MST connections is 
biologically plausible, the Zemel and Sejnowski (1998) model does provide evidence that 
small receptive field MSTd cells could process optic flow to calculate object time-to-
contact, or relative depth.   The use of optic flow to estimate object motion in depth, or 
time-to-contact, has been theorized in a number of models, some of which have also been 
related to MST (Gibson, 1950; Grossberg et al., 1999; Lidén & Pack, 1999; Nakayama & 
Loomis, 1974).      

Nolan and Sejnowski (1993, 1995) presented a model of motion segmentation and 
velocity integration by primate MT.  Like our MT-/MSTv stream, their model does not 
attempt to generate a dense veridical motion estimate.  Rather, a sparse coarse motion 
representation is computed.  Features are selected based on form information and are then 
used to determine regions for motion tracking.  Their feature tracking implementation 
allows the model to segment objects where there is conflicting motion information in 
random dot displays or transparent plaid gratings.  Input comes from spatiotemporal 
energy filters (Adelson & Bergen, 1985) and regions are selected based on global 
assessments of the input structure.  The model produces some interesting results when 
segmenting objects and resolving conflicting motion estimates.  However, the authors do 
not describe how the neural structures of primate MT+ and MT- relate to their model or 
discuss how the model could be adapted to process natural image sequences.   

Wang (1997) presented a model which demonstrated how the differing receptive 
field properties in MT+ and MT- could be learned via competitive learning (Grossberg, 
1976a, 1978; Rummelhart & Zipser, 1986).  The response properties were found to 
closely resemble many known features of MT neurons, illustrating how the MT stages of 
ViSTARS may self-organize.   

The 3D FORMOTION model (Baloch & Grossberg, 1997; Berzhanskaya et al., 
2007; Grossberg et al., 2001) exploits depth planes for object segmentation via 
interactions between the form (what) and motion (where) streams.  We have not 
implemented any form-motion interactions for object segmentation in ViSTARS.  Instead 
moving objects are represented by activations in MT-/MSTv, which are directly used for 
steering.  The form stream is needed to select, and coherently bind, motion signals that 
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are compatible with form boundaries, notably boundaries wherein multiple forms are 
separated from each other via figure-ground separation (Baloch & Grossberg, 1997; 
Berzhanskaya et al., 2007; Grossberg, 1994; Grossberg et al., 2001; Kelly & Grossberg, 
2000).  Cao, Grossberg and Zaydens (2008) have recently demonstrated how the 3D 
LAMINART model can generate 3D boundary and surface representations, in cortical 
areas V1, V2, and V4 of the form stream, in response to natural images.  Future work will 
integrate it with ViSTARS to incorporate the computational benefit of form-motion 
interactions. 

The STARS model (Elder et al., 2007) did not explain the interception of moving 
targets.  Fajen and Warren (2004) have demonstrated that humans tend to take an 
interception strategy that is somewhere between a pursuit strategy, where the target path 
is followed, and a constant bearing strategy, where a minimal path to the intersection 
point of the observer path with the target path is taken.  Fajen and Warren (2004) 
required extensive updates to their 2003 model in order to explain these data. Dessing, 
Peper, Bullock & Beek (2005) demonstrated how visually derived information can be 
used to catch a moving ball.  In order to match human data, their model utilized object 
speed and direction of motion estimates to modulate interception movements. We 
hypothesize that by incorporating speed and direction of object motion into the STARS 
steering component, rather than relying solely on positional information, ViSTARS may 
have enough information to explain interception data.  This hypothesis will be tested in 
future work.   

Finally, model computation time will have to improve before it is feasible to 
implement our model as a robotic control system.  We have reduced computation time by 
using image resizing rather than multiple filter sizes, and through coarse integration time 
steps.  In our MATLAB implementation, 8 seconds of input still require roughly 2.5 hours 
of simulation time.  In contrast, STARS ran at frame-rate on a GPU when implemented 
carefully and in a slightly pared-down form (Elder, Grossberg, & Mingolla, 2005).  We 
have replaced STARS visual processing layers with more complicated recurrent neural 
networks, but at the same time GPU power has increased dramatically since 2005.  
Subsequent work will investigate the feasibility of operating the ViSTARS model at 
frame-rate on a GPU.  Reduced versions of the model are currently capable of running on 
a modern GPU at 25 frames-per-second for input resolutions of 256x256, indicating good 
potential for the production of a real time system.   
5. Conclusion  

The ViSTARS neural model processes natural image streams for the purposes of 
object segmentation, reactive steering, and navigation.  The model elucidates motion 
representations in cortical areas V1, MT, and MST, and describes how these 
representations may be generated from noisy inputs.  The model has been tested using 
video streams from a variety of sources.  In each case, model MSTv produces accurate 
positional, directional and speed estimates of objects in the scene at sufficient accuracies 
to emulate human-like reactive navigation.  The ViSTARS model, along with the STARS 
and 3D FORMOTION models, fits into an emerging framework for heading estimation, 
navigation, object tracking, eye movements, and form-motion interactions that together 
contribute to designing a large-scale neural controller for a visually-responsive 
autonomous mobile robotic system.   
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7. Appendix A.  Model equations, parameters and implementation 
All stages of the model are defined by differential equations and were numerically 

integrated using Euler's method.  The resolution and frame rate were defined by the input 
source.  Table 1 describes each input source.   
 
Table 1:  Input sequence resolution, frame rate and sequence length.  Note that the frame rate for 
Hamburg Taxi sequence is defined based on model parameterization. 
 Resolution 

(pixels) 
Frame rate 
(fps) 

Length 
(frames | s) 

Hamburg taxi 191x256 15 41     |   2.7 
Overtaking driving video 320x240 15 26     |   1.7 
Fajen & Warren (2003) trajectories 256x256 100 750   |   7.5 
Immersed environment 1024x64 47 376   |   8 

 
Calibration was performed by fitting the time-course of the transient cell layer (level 1 of 
the model) such that the peak of the burst response occurred after 70-75ms, in accordance 
with primate non-directional transient cells (Benardete & Kaplan, 1999).  Integration was 
not performed to equilibrium.  Instead, the model activations ebb and flow as the input 
stream evolves.  Figure 1 describes the functional stages of the model with respect to 
their equation numbers and variable labels. 

Model stages are designed to elucidate how biological neurons work.  Each 
differential equation specifies the activation state of individual neurons or neuron 
populations.  Model cells are typically controlled by shunting, or membrane, equations 
(Grossberg, 1973) that perform leaky integration of inputs.  Equation (0.1) defines a 
shunting equation wherein x represents cell activity in response to excitatory inputs E and 
inhibitory inputs I: 

( ) ( )dx Ax B x E C x I
dt

= − + − − + .    (0.1) 

In Equation (0.1), parameter A determines the decay rate of the cell; B determines the 
upper bound, or excitatory saturation point, of x; E is the excitatory input; C determines 
the lower bound, or inhibitory saturation point, of x; and I is the inhibitory input.   

Signal functions define how cell activity generates an output signal.  Common 
signal functions include half-wave rectification, squaring and sigmoid functions.  Half-
wave rectification is denoted by [x]+ = max(x,0).  The output may be interpreted as the 
firing rate of a spiking neuron.    

In the equations that follow, lowercase letters correspond to variables, and 
uppercase letters correspond to output signals.  For example, r corresponds to the activity 
of MSTd cells, whereas R corresponds to an output signal from MSTd cells.  Subscript 
indices correspond to spatial positions.  Superscript indices correspond to non-spatial 
dimensions, such as speed or direction.  Uppercase indices denote dummy indices.  
Parameters are shown as uppercase letters with numerical subscripts.  When equations 
have been previously published, variables and indices have been labeled consistently 
wherever possible to make cross-referencing easier.  In cases where following these 
conventions makes an equation ambiguous or confusing, Greek letters are used.   
  The multi-scale input transformation and model levels 1 to 6 were used to 
compute heading in Browning, Grossberg & Mingolla (2008b).  Our treatment closely 
follows their description and we use identical parameters.  
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Input (g).  Video input is converted to grayscale and scaled between 0 and 1.  
Videos tested were: Fajen and Warren (2003) trajectories, a driving video stimulus set, 
the Hamburg taxi sequence, and an immersive environment.  Details on the resolution, 
frame-rate and length of each source are shown in Table 1.  Function ( )ijg tδ  represents the 
video input; it is indexed by spatial position (i,j) and disparity (δ).  In the virtual 
environment, input was generated at two disparities, near depth, and fixation depth.  In all 
other tests the input stream was defined at a single disparity. 

Multi-scale transformation (I).  Rather than implement each stage of the model 
multiple times with multiple receptive field sizes, we resized the video input and used the 
same receptive field size for each input scale.  This allows one set of parameters to 
process any number of scales at some cost of aliasing, as described below.  Resizing is 
also computationally more efficient, with larger scales being processed at a lower 
resolution.  We implemented three scales using a pixel averaging procedure.  Scale 1 is 
defined at the resolution of the input, scale 2 computes the mean value of groups of 4 
pixels (2 x 2), and scale 3 computes the mean value of groups of 16 pixels (4 x 4).   

All resizing algorithms introduce some form of aliasing, although some are more 
benign than others.  In the present case, the algorithm has no overlap between regions 
that are grouped together.  As a result, if an object with a size of 1 pixel exists on an odd-
numbered column in the input image and it moves 1 pixel to the right, to an even-
numbered column, this movement will not be visible at scale 2 if the input consists of just 
these input frames.  However, if the 1 pixel object exists on an even-numbered column in 
the input image and it moves 1 pixel to the right, the movement will be visible at scale 2.    
This aliasing effect is minimal since scale 2 is looking for movements in the range of 2 
pixels per frame over some temporal window.  Since the object described above moves at 
1 pixel per frame and alternates between visible and not visible, it will produce a weak 
signal in scale 2. At scale 1, both odd and even pixels produce the same response.  The 
object described above would therefore produce a strong signal in scale 1, the actual 
speed at which it is moving.    

The grayscale intensity values of the resized input stream are defined in the ON-
channel (equation 0.2), and the complement of its activity is defined in the OFF-channel 
(equation 0.3).  Complement coding to define the OFF channel was first described in the 
DISCOV model (Chelian & Carpenter, 2005).  Equations (0.2) and (0.3) define ps

ijI δ , the 
multi-scale input, indexed by spatial position (i, j), disparity (δ), ON/OFF channel (p=1,2), 
and scale (s = 1,2,3): 

,
1

2
( 1) 1, ( 1) 1

1 ni nj
s

ij XY
X i n Y j ns

I g
n

δ δ

= − + = − +

= ∑  (ON-channel)   (0.2) 

and 
2 11s s

ij ijI Iδ δ= −   (OFF-channel)            (0.3) 

In equation 0.2, XYgδ is the input intensity at location (X,Y) and disparity (δ), i = 1, 2, …, 

maxi
n

,  j = 1, 2, …, maxj
n

,  imax = horizontal resolution, jmax = vertical resolution of the 

input, and sn  = 2s-1. 
Level 1: ON-center OFF-surround network (γ). The first level of model processing 

is a shunting ON-center OFF-surround network (Grossberg, 1973), which normalizes 
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network activity while enhancing areas of high spatial discontinuity, such as image edges 
and corners.  The ON-center is a single pixel.  The OFF-surround is inversely weighted by 
distance from the center using a Gaussian kernel:   

1 1 1 1( ) ( )
ps

ij ps ps ps ps ps
ij ij ij ij ijXY XY

XY

da
A a B a C I D a F I

dt

δ
δ δ δ δ δ= − + − − + ∑ .  (1.1) 

In equation (1.1), ps
ijaδ  is the cell activity at position (i,j), disparity (δ), channel (p), and 

scale (s).  Parameter A1 is the decay rate, B1 is excitatory saturation potential, C1 is the 
input gain, and D1 is the inhibitory saturation potential.   In our simulations, A1 = 0.001, 
B1 = 1, C1 = 2, and D1 = 0.25. Function ps

ijI δ is the input from equations (0.2) and (0.3).  
FijXY is a Gaussian inhibitory surround kernel, truncated to a 7x7 filter:  

2 2
1

2
1 1

( ) ( )exp
2ijXY

F X i Y jF
πσ σ

⎛ ⎞− + −
= −⎜ ⎟

⎝ ⎠
,   (1.2) 

where F1 scales the inhibitory kernel gain, and σ1 is the inhibitory kernel variance.  In our 
simulations, F1 = 10.225, and σ1 = 1.  This value of F1 was chosen by Browning, 
Grossberg & Mingolla (2008b) through parameter search to provide the best results 
across a range of input stimuli.  The output signal ps

ij
δγ  is a sigmoid function of 

activity ps
ijaδ : 

.   (1.3) 

In equation (1.3), parameter G1 defines the value at which the output signal attains one-
half of its maximum value, and term φ1 is the firing threshold.  In our simulations G1

2 =  
0.001, and φ1 = 0.1.  

Level 2: Non-directional transient cells (b).  Non-directional transient cells 
respond to changes in the input stream.  The non-directional transient cell 
activities ps

ijbδ are computed as follows:   
ps ps ps

ij ij ijb x zδ δ δ= ,      (2.1) 

where cell activities, ps
ijxδ , perform leaky integration on their inputs ps

ij
δγ  (equation 1.3): 

( )2 2 2( )
ps

ij ps ps ps
ij ij ij

dx
A B x C x

dt

δ
δ δ δγ= − + −     (2.2) 

Non-zero activation ps
ijxδ results in slow adaptation of a habituative transmitter gate ps

ijzδ : 

( )2 21
ps

ij ps ps ps
ij ij ij

dz
D z K x z

dt

δ
δ δ δ= − −     (2.3)  

(Grossberg, 1968, 1980).  In equation (2.1), parameter A2 determines how fast the cell 
responds, B2 scales the passive decay rate, and C2 is excitatory saturation point.  For non-
zero inputs, ps

ijxδ  approaches C2 at a rate proportional to 2( )ps
ijC xδ− .  In our simulations, 

A2 = 10, B2 = 1, and C2 = 2.  In equation (2.3) parameter D2 determines how fast the cell 
responds, and K2 scales the habituation (or transmitter depletion) rate which is also 
proportional to ps

ijxδ .  When ps
ijxδ  is zero, activity at ps

ijzδ recovers to 1 at rate D2.  In our 
simulations, D2 = 0.01, and K2 = 20.   
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 Activity ps
ijxδ  is gated by the habituative transmitter ps

ijzδ  to generate transient 

non-directional cell activities ps
ijbδ .  For visual inputs with a short dwell time, such as 

moving boundaries, activities ps
ijbδ  respond throughout their duration.  A static input on 

the other hand, produces only a weak response after an initial transient burst of activation. 
Level 3: Directionally selective transient cells (E).  This model level defines 

directionally selective cells that can retain their sensitivity in response to variable speed 
inputs (Chey et al., 1997).  Eight directions were implemented at 45 degree increments.  
A key design that enables variable speed selectivity is the use of directional inhibitory 
interneuron activities, psd

ijcδ : 

( )3 3 3 3

psd
ij psDpsd ps

ij ij XY

dc
A B c C b K c

dt

δ
δδ δ +

⎡ ⎤= − + − ⎣ ⎦ .   (3.1) 

In equation (3.1), a directional inhibitory interneuron, psd
ijcδ , receives excitatory input 

from transient non-directional cell activity, ps
ijbδ , and inhibition from directional 

interneuron, psD
XYcδ , of opposite direction preference, D, at position (X, Y) offset by 1 cell 

in direction d.  For example, if d = 45° then D = 135°, X = i+1, and Y = i+1.  
Activity psd

ijcδ  increases proportionally to input ps
ijbδ  with coefficient A3C3 and 

decays to zero with rate A3B3
psd

ijcδ .   The strength of opponent inhibition is 3
psD

XYK cδ
+

⎡ ⎤⎣ ⎦ .  
Inhibition is stronger than excitation and vetoes a direction signal if the stimulus arrives 
from the null direction.   In our simulations, A3 = 1, B3 = 1, C3 = 1, and K3 = 2.  

Directional transient cell activities, psd
ijeδ , combine transient input ps

ijbδ , with 

inhibitory interneuron activity, psd
ijcδ .  Their dynamics are similar to those of psd

ijcδ : 

( )4 4 4 4

psd
ij psd ps psD

ij ij XY

de
A B e C b K c

dt

δ
δ δ δ +

⎡ ⎤= − + − ⎣ ⎦ .   (3.2) 

Activity psd
ijeδ  increases proportionally to transient input ps

ijbδ , passively decays with a 
fixed rate, and is inhibited by an inhibitory interneuron tuned to the opposite direction.  In 
our simulations, A4 = 10, B4 = 1, C4 = 1, and K4 = 2.   

The output of the directional transient cell network is the half-wave rectified 
activity of psd

ijeδ : 
psd psd

ij ijE eδ δ +
⎡ ⎤= ⎣ ⎦ .     (3.3) 

Level 4: Directional competition (f).  Due to the aperture problem, outputs from 
the directional transient cell network (equation 3.3) do not unambiguously signal the 
direction of object motion (Marr & Ullman, 1981; Wallach, 1935; Wuerger et al., 1996).  
Cross-directional normalizing competition enhances the least ambiguous regions and 
suppresses the most ambiguous regions, thus strengthening feature tracking signals which 
help reduce the effects of the aperture problem (Bayerl & Neumann, 2004; Berzhanskaya 
et al., 2007; Chey et al., 1997; Lucas & Kanade, 1981; Mingolla, Todd & Norman, 1992).  
ON and OFF channel directional transient cell inputs are added together at this stage, and 
competitively normalized across direction: 
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5 5 5( ) ( )
sd

ij sd sd psd sd psD
ij ij ij ij ij

p D d p

df
A f B f E C f E

dt

δ
δ δ δ δ δ

≠

= − + − − +∑ ∑∑   (4.1) 

In equation (4.1), activity, sd
ijf δ , integrates excitatory input from the directional transient 

cells across channels (p) at the same disparity (δ),  position (i, j), scale (s), and directional 
preference (d), and is suppressed by directional transient cells at the same scale and 
position, from both channels, with directional preferences D ≠ d.  Parameter A5 is the 
passive decay rate, B5 is the excitatory saturation potential, and C5 is the inhibitory 
saturation potential.  In our simulations, A5 = 0.1, B5 = 1, and C5 = 0.01.   

For efficient computation across scales in subsequent model levels, the output of 
level 4 is resized so that all scales are represented at the lowest pixel resolution, which is 
that of the scale s = 3.  Variable sd

ijmδ  computes the mean activity across groups of cells 
with the same scale and directional selectivity: 

,

2
( 1) 1, ( 1) 1

1 ni nj
sd sd

ij XY
X i n Y j ns

m f
N

δ

= − + = − +

= ∑ ,     (4.2) 

where 32 s
sN −= , for s = 1, 2, 3, i = 1, 2, …, max

4
i , and j = 1, 2, …, max

4
j , where imax is 

the horizontal resolution, and jmax is the vertical resolution of input ijgδ
.  Note that this 

definition of Ns in (4.2) is different from that of ns equation (0.2).  In equation (0.2), scale 
1 is at the original input resolution, scale 2 is reduced by a factor of 2, and scale 3 is 
reduced by a factor of 4.  In equation (4.2), scale 1 is reduced by a factor of 4, scale 2 is 
reduced by a factor of 2, and scale 3 does not change.   

Level 5:  Directional long-range filter (Q).   Motion estimates from level 4 are 
integrated across scale by a directional long-range filter to produce a more globally-
sensitive direction estimate in activities d

ijq :   
 

( ) 6
6 6 6

6

1
d
ij d d d sd d d d D

ij ij ijXY s XY z ijz ij ij dD ij
XY s z D

dq CA q B q L N m R w D Q q v Q
dt M

δ

δ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞
= − + − + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑ ∑
      (5.1) 

In equation (5.1), excitatory input signals sd
ijmδ  from equation (4.2) are added across 

disparity (δ), and scale (s) with weights 32 s
sN −=  to account for the low density of 

signals at lower scales, filtered by a directional long-range filter kernel, d
ijXYL  (see 

equation 5.2), and modulated by feedback that is proportional to heading cell activity, 
d

z ijz
z

R w∑ , where zR  is the output from the cell population with heading z (equation 

(6.2)), and d
ijzw  defines the flow filter associated with heading z, at spatial position (i, j) 

and directional selectivity (d); see Level 6.  Recurrent connections D
ijQ  within equation 

(5.1) implement a choice network via self-excitation and lateral inhibition across 
direction from cells in the same position.  The inhibitory strength is governed by the 
kernel dDv  (equation 5.4).  Parameter A6 defines the passive decay rate, B6 is the 
excitatory saturation point, C6 scales heading feedback, M6 is the number of heading 
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cells, and D6 is self-excitatory gain.  In our simulations, A6 = 0.5, B6 = 1, C6 = 0.5, and 
D6 = 0.5.  

The directional long-range filter, d
ijXYL , is an anisotropic Gaussian elongated along 

the filter’s direction of selectivity: 
22

6 exp 0.25
2

d
ijXY

x y x y

L X i Y jL
πσ σ σ σ

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟= − + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
,   (5.2) 

where L6 is the long-range filter gain,  σx is the horizontal variance, and σy is the vertical 
variance.  Values less than 0.005 were truncated.  In our simulations, L6 = 2, and for 
horizontal filters, σx = 3, and σy = 2.  Output from level 5 is half-wave rectified and 
squared: 

( )2

6
d d
ij ijQ q θ

+
⎡ ⎤= −⎣ ⎦ ,     (5.3) 

where θ6 = 0.2 is the signal threshold.  The lateral inhibition weighting function is 
defined as follows: 

  0      
 0.5   45
 1      90
 1      135

10    180

dD

D d
D d

v D d
D d

D d

=⎧
⎪ = ± °⎪⎪= = ± °⎨
⎪ = ± °⎪

= ± °⎪⎩

 .    (5.4) 

Function dDv  represents a distributed opponent inhibition function.  Browning, Grossberg 
& Mingolla (2008b) demonstrated that many types of opponent inhibition can produce 
accurate and robust results.  The function shown in equation (5.4) produced the best 
reported results across a range of stimuli. 

Level 6: Heading filter (R).  Flow filters, or templates, d
ijzw , were generated to 

match the 2D translational motion vectors produced when moving towards a specific 
heading.  The flow filters were normalized such that, in each position, the flow filter 
represented only direction and not speed.  As noted in Browning et al. (2008b), this is 
consistent with filters learned using a self-organizing map (Cameron et al., 1998; Elder et 
al., 2007).   A row of flow filters was created corresponding to headings at 1/2 the 
vertical resolution of the input.  Within the row, heading cells were spaced at every third 
pixel, starting at pixel 2.  Heading cell activity, zr , results from matching the flow 
filters, d

ijzw , against inputs d
ijQ  from level 5 (equation 5.3): 

( ) 7
7 7 7 7

7

d dz
z z ijz ij z z

d ij z

Cdr A r B r w Q D R r E R
dt N ε

ε ≠

⎛ ⎞ ⎛ ⎞
= − + − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
∑∑ ∑ ,  (6.1) 

for a particular heading (z), summed across spatial positions (i,j) and directional 

selectivities (d).  The pattern match is weighted by 7

7

C
N

, where N7 is the energy of the 
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flow filter, defined as the sum of all values in the filter.   Self-excitation and mutual 
inhibition via a sigmoid feedback signal  

( )
( )

2

7

2
2
7 7

z

z

z

r
R

G r

θ

θ

+

+

⎡ ⎤−⎣ ⎦
=

⎡ ⎤+ −⎣ ⎦

,    (6.2) 

produce a contrast-enhancing network (Grossberg, 1973).  Parameter A7 defines the 
passive decay rate, and B7 is the excitatory saturation point.  In our simulations,   
A7 = 0.5, B7 = 1, C7 = 4, D7 = 0.25, and E7 = 0.25.  In equation (6.2), parameter G7 = 0.1 
defines the value at which the sigmoid signal attains one-half of its maximum value, and 
θ7 = 0.2 is a signal threshold.  For simplicity, the feedback and output signals zR are the 
same. 
 Level 7:  Differential motion filter (Ω).  To determine motion discontinuities in 
the input, differential motion filters process input from level 4 via a directionally-tuned 
ON-center OFF-surround network:   

( ) ( )8 8 8 8

8 8

1

                                   

sd
ij sd sd sd d sd

ij ij ijXY s XY ij ij
XY

sd sD sDdD
ij ijXY XY dD ij

D XY Dd

d
A B q L K m C D

dt

uE G m F v
u

δ
δ δ δ δ δ

δ

ω
ω

ω Δ Δ

⎛ ⎞⎛ ⎞
= − + − + Ψ + Ω⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞

− + Ω⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑
.      (7.1) 

In equation (7.1), cell activity sd
ij
δω  computes motion boundaries. The ON-center, 

sd
ijXY s XY

XY
L K mδ∑ , receives excitatory input sd

ijmδ from level 4 (see equation (4.2)), across 

positions (X,Y), at scale (s), direction selectivity (d), and disparity (δ).  These inputs are 
integrated by the Gaussian filter  

( ) ( )2 2
8

2 2exp 0.25
2ijXY

x x

X i Y jLL
πσ σ

⎛ ⎞⎛ ⎞− + −
⎜ ⎟= − ⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
,    (7.2) 

where L8 = 0.25 is the filter gain, and σx = 0.5 is its variance.  ijXYL  is weighted by scale 
parameter Ks, where K1 = 2, K2 = 5, and K3 = 9.  Top-down modulatory feedback from the 
object motion level 8, d

ij
δΨ , enhances congruent object motion estimates. The OFF-

surround, 8
sDdD

ijXY XY
D XYd

uE G m
u

Δ∑ ∑ , competes across depths Δ ≠ δ, and positions (X,Y), 

within each scale (s) via Gaussian kernel 

( ) ( )2 2
8

2 2exp 0.25
2

d
ijXY

y y

X i Y jGG
πσ σ

⎛ ⎞⎛ ⎞− + −
⎜ ⎟= − ⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
    (7.3) 

where G8 = 0.57 is the filter gain, σy = 1.5 is its variance, and directional kernel   
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     (7.4) 

where dDu  is normalized via division by the sum du over all dDu , which equals 12.50.  
Recurrent shunting ON-center OFF-surround feedback signals  

( )2

8 ,sd sd
ij ij
δ δω θ

+
⎡ ⎤Ω = −⎣ ⎦      (7.5) 

where θ8 = 0.1 is the signal threshold, implement a choice network via directional 
competition from cells at the same position.  The directional inhibitory coefficients 

dDv are defined by equation (5.4).  In our simulations, A8 = 0.5, B8 = 1, C8 = 0.05, 
D8 = 0.05, E8 = 0.25, and F8 = 0.05. 
 Level 8:  Object motion (Ψ).  Motion boundary outputs, sd

ij
δΩ  (equation (7.4)), are 

grouped across scale to produce activations, d
ij
δψ , that are proportional to object speed: 

( )9 9 9 9 9

d
ij d d sd d d D

ij ij s ij ij ij ij
s D d

d
A B C w D E

dt

δ
δ δ δ δ δ δψ

ψ ψ ψ
≠

⎛ ⎞
= − + − Ω + Ψ − Ψ⎜ ⎟

⎝ ⎠
∑ ∑ . (8.1) 

In equation (8.1), excitatory input from sd
ij
δΩ  at the same position (i,j), directional 

selectivity (d), and depth (δ) is summed across scale with weights ws, such that w1 = 1
6

, 

w2 = 1
3

and w3 = 1
2

.  This weighting function ensures that objects in higher scales are 

always seen to be moving faster than those in lower scales.  A recurrent ON-center OFF-
surround network with directional competition and sigmoid signals 

( )
( )

2

8

2
2
8 8

d
ij

d
ij

d
ijG

δ

δ

δ

ψ θ

ψ θ

+

+

⎡ ⎤−⎣ ⎦
Ψ =

⎡ ⎤+ −⎣ ⎦

,    (8.2) 

implements a contrast enhancing network (Grossberg, 1973), with G8 = 0.1, and θ8 = 0.2, 
within equation (8.1).  Parameters, A9 = 0.5, B9 = 1, C9 = 2, D9 = 1, E9 = 2.  
STARS steering module 

The STARS (Elder et al., 2007) steering module was adapted for embedding 
within ViSTARS. Steering commands to the left or right depend on the horizontal 
positions of objects and heading. Object motion outputs are therefore computed along 
horizontal lines and summed across direction:   

                             d
j j

d
pδ δ

λ= Ψ∑ .    (9.0) 

In equation (9.0), activity in jpδ at horizontal position j, and disparity δ, groups object 
activations across direction at vertical position λ = 12. 

STARS defines objects at fixation depth, δ = F, as goals and at nearer depths, δ = 
N, as obstacles.  Therefore: 
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F
j jg p=      (9.1) 

and 
N

j jo p= ,     (9.2) 

where g denotes goal, o denotes obstacle, and p is defined in equation (9.0).  Heading cell 
output Rz (equation (6.2)), is relabeled:  hj =Rz where horizontal position j maps directly 
on to the horizontal position of heading z.  The steering field, sj, can then be defined as:  

 g o
j jY Y j jY Y

Y Y
s A G g Bh C G o= + −∑ ∑ .   (9.3) 

Goals, Yg , excite the steering field via the Gaussian kernel 

 
21 exp

2
g
jY gg

j YG
σσ π

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   (9.4) 

where gσ  = 1.25.  Heading, jh , excites the steering field.  Heading is represented as a 
Gaussian-like activation distribution across position j, and as such no additional kernel is 
required.  Obstacles, Yo , inhibit the steering field via a Gaussian kernel  

21 exp
2

o
jY oo

j YG
σσ π

⎛ ⎞−⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
   (9.5) 

 where oσ  = 0.25.  Parameter A scales the goal excitation, B scales the heading 
excitation, and C scales the obstacle inhibition.  In our simulations, A = 4, B = 1, and 
C = 4.   

The peak of the steering field: 
~

arg max( )j
j

S s=      (9.6) 

is used to define the steering command from the rate of change of heading angle, 
~d S N

dt
φ
= − ,     (9.7) 

where N = 128.5 is the position of the mid-line of the stimulus input.  The virtual 
environment is simulated with a horizontal resolution of 256 pixels at area MST (1024 / 
4); the horizontal midline therefore lies midway between pixel 128 and pixel 129.   
Heading changes of less than 1 pixel on any given time step are suppressed: 

 

0                 1
'

H      therwise,

d
d dt
dt d o

dt

φ
φ

φ

⎧
<⎪⎪= ⎨

⎪
⎪⎩

    (9.8)  
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where H scales the steering command in relation to observer translation speed.  In our 
simulations, the observer moves forward at a speed of 1ms-1, there are 47 image frames 

per second, and rotations are scaled by a factor of 5, so that H = 5
47

.   
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