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Contour Enhancement, Short Term Memory,
and Constancies in Reverberating Neural Networks

By Stephen Grossberg*

A model of the nonlinear dynamics of reverberating on-center off-surround net-
works of nerve cells, or of cell populations, is analysed. The on-center off-surround
anatomy allows patterns to be processed across populations without saturating
the populations' response to large inputs. The signals between populations are
made sigmoid functions of population activity in order to quench network noise,
and yet store sufficiently intense patterns in short term memory (STM). There
exists a quenching threshold: a population's activity will be quenched along with
network noise if it falls below the threshold; the pattern of suprathreshold popula-
tion activities is contour enhanced and stored in STM. Varying arousal level can
therefore influence which pattern features will be stored. The total suprathreshold
activity of the network is carefully regulated. Applications to seizure and hallucina-
tory phenomena, to position codes for mo~or control, to pattern discrimination, to
influences of novel events on storage of redundant relevant cues, and to the
construction of a sensory-drive heterarchy are mentioned, along with possible
anatomical substrates in neocortex, hypothalamus, and hippocampus.

1. Introduction
Recent experimental studies of the hippocampus (Anderson et at. 1969) have
suggested that its cells are arranged in a recurrent on-center off-surround anatomy.
The main cell type, the pyramidal cell, emits axon collaterals to interneurons.
Some of these internueurons feed back excitatory signals to nearby pyramidal
cells. Other interneurons scatter inhibitory feedback signals over a broad area.
Recurrent on-center off-surround networks are found in a variety of neural
structures other than hippocampus; for example, neocortex (Stefanis, 1969) and
cerebellum (Eccles et aI, 1967). What does this fundamental principle of neural
design accomplish? What can a recurrent, or reverberating, network do that a
non-recurrent, or feed-forward, network cannot? In the special case of the hippo-
campus, one can in particular ask: How does this anatomy contribute to seizure
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activity in response to topical application of either strychnine or penicillin crystals
(Anderson et ai, 1969)? Can one functionally interpret the suggestion that afferent
fibers to the hippocampus excite the inhibitory interneurons directly (Anderson
et ai, 1969), thereby creating a feed-forward inhibitory action, in addition to the
recurrent inhibition activated by pyramidal cell output?

This paper describes mathematical results that seem to be relevant to these
issues. We study a model that emphasizes the properties of interacting populations
of cell 'sites. These populations can be interpreted either as populations of small
membrane patches on individual cells, or as populations of whole cells. The
model is perhaps more general since it is defined by mass action laws involving
excitatory and inhibitory processes. As in the paper of Wilson and Cowan (1972),
we assume that the cell sites in a given population are distributed in such a fashion
that their interactions are spatially random and densely distributed within each
population and between population pairs. Our equations differ from those of
Wilson and Cowan, however. Their excitatory and inhibitory interactions combine
additively before they are further processed; our interactions are of shunting
type (Hodgkin, 1964; Sperling, 1970; Sperling and Sondhi, 1968). Differences in
the applicability of these eq uations are discussed in Section 5.

Denote the average excitation at time t of the ith population Vi by Xi(t), i = I,
2. ...,p1. We will study how these averages are transformed through time by
recurrent on-center off-surround interactions (Figure 1); that is, each population
excites itself and inhibits other populations via the system of eq uations

Xi = -A'~i + (B -xJf(xJ -Xi I f(.~J + Ii'
k~i

where i = I, 2, ..., n, and Xi( S B) is the mean activity of the ith cell. or cell popula-

tion, Vi of the network. Four effects determine this system: (1) exponential decay,
via the term -AXi; (2) shunting self-excitation, via the term (B -xJf(."(J: (3)
shunting inhibition of other populations, via the term -xiLk=if(xJ; and (4)
externally applied inputs, via the term Ii. The function f(w) describes the mean
output signal of a given population "as a function of its activity ,~." In vivo, f(w) is

.+ +

RESPONSE TO EXTERNAL INPUT
ro Vi AS SEEN FRor.I ABOVE

Figure 1. Recurrent on-<:enter off.surround network.
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often a sigmoid function of w (Kernell, 1965a, b; Rail, 1955a-<:). The mathematical
results below will show that this is an important property of the above model for
the effective processing of signals in noise.

First, why is an on-center off-surround anatomy needed at all? It has been noted
that such an arrangement permits contour enhancement of sensory information
(Ratcliff, 1965). We will show that a more basic property can be achieved as well.
In many neural systems, noise cannot be avoided, if only because they operate
near the quantum range, as in the case of sensory systems. Also cells, and therefore
cell populations, have finite saturation levels in response to external inputs.
Given these facts, consider the processing of a pattern of input signals delivered to
an ensemble of noninteracting cell populations. If the signals are too small, they
can be lost in the noise. If they are too large, they can saturate their respective
populations, thereby creating a uniform pattern of excitation across populations
and destroying all information about the input pattern. In short, noninteracting
cell populations are caught between two unsatisfactory extremes. To avoid these
extremes in the noninteracting case, input intensities must be restricted to a very
narrow range, and one loses the ability to process arbitrary patterns with fluctuating
input intensities. On-center off-surround interactions solve this problem: they
permit effective processing of arbitrary input patterns across populations, without
saturation, even if the inputs are large.

Recurrent on-center off-surround anatomies are capable of short term memory
(STM); that is, th~y can reverberate a pattern of activity distributed over cell
populations for an indefinite interval of time: This reverberation can also be
switched off rapidly by inhibitory inputs if a new pattern is delivered by external
sources; the decay rates of individual cells can be large after the excitatory rever-
berating loop is broken by inhibition, even if the reverberation through an active
excitatory loop is long lived. See Figure 2. A single layer of nonrecurrent on.
center off-surround network has limited STM capabilities. Such a network can
store a pattern only if it has small decay rates. It will therefore also recover slowly

11 (t)

Figure 2. Input inhibits old reverberation as it imposes a new pattern to be reverberated.
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from inhibition aimed at shutting the pattern off. Consequently, its response to
new inputs will be biased by the lingering traces of old inputs. In a psychological
cont~xt,. the use of reverberation as a mechanism of STM has been suggested
(Estes, 1972; Grossberg 1971a). For example, from operant conditioning experi-
ments, one is led to seek reverberatory processes that can maintain in short term
storage internal representations of sequences of external events until later rewards
or punishments occur and transfer the memory of these sequences to long term

storage (Grossberg, 1971a). The interplay of reverberatory and arousal processes
on this transfer process has been discussed on various levels, for example neuro-

physiologically (John 1966) and psychologically (Grossberg, 1971a, 1972a,
1972b).

The STM capabilities of recurrent networks carry with them possible difficulties.
If these networks can reverberate patterns imposed by external inputs, then why
don't they also reverberate their own noise indefinitely, thereby flooding the
network with its own noise? The answer is that they do, if the signal function f(w)
is improperly chosen. For example, if f(w) is a linear function of w, or a function
that grows slower than linearly, such as f(w) = w(l + W}-I, then noise will be
amplified and reverberated. Note that if f(w) is linear, then no contour enhance-
ment will occur; the f(w) that does provide contour enhancement is chosen, first
and foremost, to prevent amplification and reverberation of noise. If f(w) grows
faster than linearly, such as f(w) = w2, then this problem is avoided. Sufficiently
small noise values will dissipate through time. If a brief, but sufficiently intense,
input pattern is imposed on the noise, however, then two things happen. First,
all populations which receive the largest input in the pattern will suppress the
activity in all other populations, including the noise. Second, normalization occurs:
the total activity x(t) = D= 1 Xk(t) of all the populations approaches a fixed
positive limit through time. The first property shows that an extreme form of
contour enhancement occurs: only the peaks of the input pattern survive. If one
population of the network receives more input than any other, then the network
"chooses" this population and quenches all others. The second property shows
that the system precisely regulates its total activity, and can store the activity of
certain populations indefinitely in STM by reverberating their activity through
excitatory recurrent interneuronal loops.

The first property is too strong: too much of the pattern is suppressed in the
attempt to suppress the noise. How can this be avoided? The way is to choose f(w)
so that it grows faster than linearly for small values of w, and (approximately)
linearly at larger values of w. Then noise dissipates, and there exists a quenching
threshold. This means that, given a sufficiently energetic pattern of inputs, the
activities of populations which fall below the threshold are quenched (including
noise) and those which fall above the threshold are contour enhanced and stored
in STM.

In the subsequent discussion,' let the existence of a constant quenching threshold
be assumed. Then the determination of which populations will be quenched, in
the presence of sustained inputs, depends on the total strength I = I~ = Ilk of the
input to all populations. Consider Figure 3. In Figure 3, a nonspecific arousal
input J A combines with a specific input J i at each population Vi. Two important
cases arise. In Case 1, J A and Jj combine multiplicatively to influence the activity
level ,Xi' Input J A is said to shunt the activity level (Grossberg, 1973). In Case 2,
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Figure 3. Interaction of arousal and specific inputs.

J A and Ji combine additively to influence the activity level Xi. Consider Case 1 for
definiteness. Then the input J A does not change the relative input levels to the
various populations. (In Case 2, a large J A tends to uniformize any pattern of J i'S.)
Let J A be parametrically increased to ever higher levels. One hereby increases the
number of populations that receive enough input to exceed the quenching threshold
and are stored in STM. Conversely, reducing J A decreases the number of popula-
tions that will be stored. Thus, given an input pattern in which many inputs are
close to each other in relative size, one way to "make a choice" between popula-
tions is to lower the arousal level of the input until only one population exceeds
the quenching threshold; in common parlance, put the network in a quiet place.
By contrast, one way to make as many cues as possible relevant to further network
processing is to substantially increase the arousal level. Thus, suppose that a
"novel" stimulus excites the network's nonspecific arousal source. Then all
recently presented cues can have their network representations brought into
STM to playa part in further network processing, including the sampling and
subsequent learning of motor responses (Grossberg, 1973). In this way, novel or
unpredictable events can bring all possible information about presently available
cues into an active state, to enhance the network's ability to deal with the unexpected
situation. Using this mechanism, one can approach the problem of how redundant
relevant cues are learned (Trabasso and Bower, 1968).

A particularly interesting case arises when the input Ji, unbolstered by a suffi-
ciently large value ofJA, is too small to drive Xi above the quenching threshold.
Then any mechanism that inhibits the action of J A at a given population can pre-
vent this population from reverberating in STM. Figure 4 provides two examples
that illustrate this concept. In Figure 4a, the inhibitory input prevents arousal
from activating Xi' but Xi'S excitatory recurrent collateral bypasses the inhibition.
Thus, if population Vi is already reverberating, it continues to do so when the
inhibitory input is activated. By con~rast, suppose that a new input pulse to Vi
occurs simultaneously with inhibition of arousal. Then the afferent inhibition
controlled by the new input briefly inhibits the reverberation to allow the new
input to begin reverberating without bias due to the previously reverberated input.
The new input cannot reverberate, however, because inhibition of arousal prevents
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Figure 4. Arousal inhibitors can preserve old reverberations but prevent new reverberations.

it from exceeding the quenching threshold. In short, this type of arousal-inhibition
can prevent transfe-r of new inputs into STM, but permits storage of old inputs in
STM. By contrast, in Figure 4b, inhibition of arousal also inhibits STM of old
and new inputs.

The above properties have many possible interpretations. For example, suppose
that each population in the network responds to lines (Hubel and Wiesel, 1968),
orientations (Blakemore and Campbell, 1969), or other geoIJ1etrical features of
external objects. Then varying the arousal level and/or arousal-inhibitors can
determine whether a unique geometrical feature of the visual scene, or some
particular combination of features, will control motor behavior.

In a similar fashion, particular features of a spatial pattern, such as its boundary,
can be stored by the network, while other parts of the pattern are quenched.
Suppose for example that the n interacting populations Vi form a rectangular
grid in a plane. Choose n very large, and pack the populations closely together to
achieve a good spatial resolution of external inputs. Let external inputs be delivered
to the populations as follows. If an excitatory 'input is delivered to Vi, then in-
hibitory inputs are delivered to all Vk in a small circular region around Vi (non-
recurrent on-center off-surround input field). Suppose that the strength of inhibi-
tion depends on the distance of Vk from Vi' and let the same be true for all i = 1,
2, ..., n. Let a filled triangle be presented to the field. One readily computes that
the populations that are excited by the triangle's vertices receive the largest net
excitatory input, the populations that are excited by the remainder of the triangle's
boundary receive lesser excitatory inputs, and the populations excited by the
deepest parts of the triangle's interior receiv.e the smallest excitatory inputs. If the
arousal level is sufficiently high, this pattern can be preserved as delivered to the
network, apart from the occurrence of normalization. Smaller arousal levels can.
however, either quench the interior of the triangle and contour enhance its boun-
dary, or can quench all but the triangle's vertices.
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