Cortical Dynamics of Form-Motion Interactions in V1, V2, MT and MST

Julia Berzhanskaya, Steve Grossberg, Ennio Mingolla.

Department of Cognitive and Neural Systems, Boston University, Boston, MA.

Motion Integration and Segmentation
- **Aperture problem**
- **Motion grouping: when should it be done?**
- **V1-V2-MT-MST network**

Form-Motion interactions are necessary to solve the problem.

Motion Grouping Across Occluders
- **V1-V2 Figure-Ground Separation**
- **Formotion Input = FACADE Output**
- **Motion Grouping of FORMOTION Inputs**
- **The Ambiguous X-Junction**

V1-V2 Motion Grouping

Motion Grouping Across Occluders
- **Chopsticks Motion Simulation**
- **Chopsticks Boundary Completion**

Motion Grouping of Formotion Inputs

The Ambiguous X-Junction
- **Form System**
- **How to bridge the ambiguous X-junction?**
- **Attention to one bar causes it to be perceived as an occluder.**

Motion Grouping Across Occluders

The Role of MT-V1 Feedback
- **Model based on FACADE and Formotion uses V1-V2-MT-MST loop to explain Motion grouping behind occluders.**

Conclusions
- **Motion-defined binary contours and kinesthetic boundaries.**
- **Motion grouping behind occluders.**
- **Separation in depth based on motion.**

References
- Anderson, B. and Barth, H. C. Motion-based mechanisms of illusory contour synthesis, Neuron, 24, 433-441.
- L.A. 2001 claim: “Contours implying convex, closed forms (good Gestalts) are given the ‘green light’ for motion integration, whereas contours implying open, concave forms trigger a veto that prevents motion binding.”

We explain the data using:
- **V1 V2 Figure-Ground Separation**
- **V2 MT Form-Motion Interaction**
- **MT MST Motion Grouping**

Facade 3-D Boundaries and Surfaces

Chopsticks: Motion Separation in Depth

Closing Formotion Feedback Loop

Directional Grouping

Boundary Grouping

Motion Grouping Across Occluders

Conclusions
- **Model based on FACADE and Formotion uses V1-V2-MT-MST loop to explain Motion grouping behind occluders.**
- **Separation in depth based on motion.**

Also can explain:
- Motion-defined binary contours and kinesthetic boundaries.
- Motion grouping behind occluders.
- Separation in depth based on motion.